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This tutorial introduces the concept of Time-varying Optimal Control and introduces the Linear 
Quadratic Regulator (LQR). The basic approach is to poise the control problem in an optimization 
framework. The motivation is that optimization methods provide a convenient method to select the 
placement of closed loop poles using intuitive trade-offs between state error and control effort. Also, 
the method works very well with both SISO and MIMO systems. 

The LQR method was introduced by R. Kalman in 1960 in a series of three papers and was the 
beginning of optimization in control systems. The reference for this material is Franklin, Powell & 
Workman, “Digital Control of Dynamic Systems”, 2nd Ed, Addison-Wesley, and Bryson and Ho, 
“Applied Optimal Control”, Hemisphere Publishing.

Math alert: this tutorial is math intensive in the solution development but the final results are very 
tractable and easy to use in every-day control engineering. The first solution will will apply to time-
varying optimal control. The results are then easily extended to the steady-state solution. 

Solving the LQR

The problem solved here assumes a linear time-invariant (LTI) discrete-time system. Consider a dynamic 
system defined by:

   [1]

The problem to be solved is to design a control u(k) based on the system states x(k) that will drive the 
terminal x(k) to a desired end state. Note, the problem formulation does not need information on the output 
matix C.

An Optimization Problem

The problem is cast as an optimization problem where we minimize a cost function given by the following.

                         [2]

The weighting matrices Q and R are defined to be positive definite. The problem can be restated that we 
wish to minimize 

                                         [3]

subject to the constraint 

                            [4]

This is a constrained minima problem that we can solve using the method of Lagrange multipliers. The 
Lagrange function is
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     [5]

The solution is found as the minimum of  with respect to x(k), u(k) and . Continuing with the 
minimization by setting the gradients to zero we arrive at the following three equations.

[6]

[7]

                                  [8]

The three equations [6], [7], and [8] are the control equation, state equation and adjoint equation. 

The adjoint equation can be written as a backward difference equation

. [9]

You can think of this equation as starting at k= N+1 and iterating backwards to k = 0. 

The above equations can be can be written more concisely in the following three equations,

[10a]

                                     [10b]

                                     [10c]

The three equations summarized in (10) are a set of coupled difference equations defining the optimal 
solution of x(k), (k) and u(k) given the initial or final conditions.

Boundary Conditions

The initial conditions on x(k) must be given. The initial condition   is not known, but we can work 
backwards from time k = N+1. From the cost function [2], u(N) must be zero to minimize J, because 
u(N) has no effect on x(N). This yields  = 0 from [10b].

From (9) the boundary conditions are then,

 [11]

The solution of [10a, b, c] from Bryson and Ho (1969) assumes

[12]
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This transforms the two-point boundary value problem in x and  to one in S with a single-point 
boundary condition. With the definition from [12] and the control equation [10b] we can write the 
control as

[13]

After several substitutions using the new definition of  in [12] and the above u(k) into the set of  
equations 10[a], 10[b] and 10[c] the variables  and  can be eliminated, ( see “Franklin & Powell”).

The final result is:

[14]

The Algebraic Riccati Equation (ARE)

The equation in [14] is the discrete algebraic Riccati equation. It can be solved recursively [16] using 
the boundary conditions,

[15]

I will not derive the recursion equation. Those interested should look at references “Franklin & 
Powell”, or “Bryson and Ho”.

The procedure for solving the time-varying optimal gain is summarized in this pseudo code:

[16]

To apply the control for any initial conditions on x the state equation and control law are iterated using 
the stored optimal gain K(k).

[17]

 The optimal gain can be computed using the boundary condition K(N) = 0. K can be precomputed 
with a known length N, but does not require knowledge of the initial state x[0]. The optimal K(k) will 
change with each time step. We will see this in the example given later.

S(N) = Q, K(N) = 0;
for k= N:1
  M(k) = S(k) – S(k)·B·[R + BT·S(k)·B]-1·BT·S(k)
  K(k-1) = [R + BT·S(k)·B]-1·BT·S(k)·A
  S(k-1) = AT·M(k)·A +  Q
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The Steady State LQR Case

The optimal control gain that minimizes the cost function in the infinite time case is also called the 
Linear Quadratic steady state regulator (LQR) case and it has a constant gain. 

In the time-varying case it is found that the gain reaches a constant value we can all K∞. This value is a
constant we call the solution to the LQR regulator problem. One way we could solve for this is to use a
“large” terminal value of N and iterate backward in time to k=0, using [16].

Another solution is to look for a steady state solution to the Riccati equation [14]. In steady state S(k) =
S(k+1).  We will call this S∞ and simplify the Riccati  solution to:

[18]
where, 

The equation in [18] is called the algebraic Riccati equation. Knowing S∞ is positive definite it can be 
solved using numerical methods. 

Luckily for us, we can turn to using modern tools to solve the LQR problem and obtain the optimal 
feedback gain with a simple function call in MATLAB or Python.

LQR In Practice

In MATLAB the solution to the LQR problem is bundled in the lqr command and works with 
continuous time or discrete time.

        

The command dlqr  can also be used for the discrete-time case,

[K,S,CLP] = lqr(SYS,Q,R,N) calculates the optimal gain matrix K for the

                     continuous or discrete state-space model SYS. lqr also returns the

                     solution S of the associated algebraic Riccati equation and the closed-loop 
                     poles CLP = EIG(A-B*K). The matrix N is set to zero when omitted.

[K,S,CLP] = lqr(A,B,Q,R,N) is an equivalent syntax for continuous-time

                     models with dynamics dx/dt = Ax+Bu.
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The LQR solution is also available in Python using the control package control.lqr module. The Example 
problems is solved in both MATLAB/SIMULINK 2023a as well as in Python version 3.9.

LQR Example – Time-varying

This problem example is a double integrator system with viscous damping constant kv, and force. 
constant kf, controlled with full-state feedback and reference feed-forward. The Reference command is 
10 units. The sample time is Ts=0.25. The MATLAB script lqr_ex1.m does all the setting of parameters
and calculating the time-varying gains. The SIMULINK file is not needed for this portion.

Figure 1 – Block Diagram lqr_ex1_sim.slx

      

dlqr  Linear-quadratic regulator design for discrete-time systems.
 
        [K,S,CLP] = dlqr(A,B,Q,R,N) calculates the optimal gain matrix K 
        such that the state-feedback control u[n] = -Kx[n] minimizes the 
        cost function
 
                 J = Sum {x'Qx + u'Ru + 2*x'Nu}
 
         subject to the state dynamics  x[n+1] = Ax[n] + Bu[n].  
 
        The matrix N is set to zero when omitted.  Also returned are the
        Riccati equation solution S and the closed-loop eigenvalues CLP                            
                                                         -1
        A'SA - S - (A'SB+N)(R+B'SB)     (B'SA+N') + Q = 0 ,
 
        CLP = EIG(A-B*K) .

https://tremaineconsultinggroup.com/


Tutorial on Optimal Control – LQR
Tremaine Consulting Group 10/29/2023

6/7
The state equations are Ad= [1.0000    0.2497
                                                        0    0.9975]
                                      Bd= [0.0624
                                               0.4994]
Using MATLAB, the Controllability matrix is rank 2, so the system is controllable. The state weighting
matrix Q will be set to [2 0; 0 0.1] to put a heavy penalty on position and a small penalty on velocity.

Next, the feedback gain was calculated assuming N=50 samples. This is a plot of the time-varying 
gains:

Figure -  2: Time-varying gain with N=50 samples
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Time-optimal gains

The gain K at time step k=50 is K=[0.2161    1.0752] and at k=1 the gain is [0.0042   0.6656]. For the 
infinite time case we will show the LQR gain to be K=[0.2161    1.0752] .

LQR Example – Infinite Time

In this example it is the same system as described in the time-varying example. The only change is how
we calculate the feedback gain. 

The state weighting matrix Q will initially be set to [2 0; 0 0.1] to put a heavy penalty on position and a
small penalty on velocity. The R weighting matrix will be set to 1.0. Using lqr, the feedback gain is 
Kgain = [.0423  1.0428]. The closed loop eigenvalues are located at z = [0.7058 +/- 0.2088i].

Figure 3 – Infinite time LQR response – Heavy penalty on position
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In the next plot the Q matrix was changed to [0.1 0; 0 2.0] to put a heavy penalty on velocity and a 
small penalty on position. The R weighting matrix remained set to 1.0. Using lqr, the feedback gain is 
Kgain = [0.2180    1.0759]. The closed loop eigenvalues are located at  z = [0.9455, 0.5012].

Figure 4: – Infinite time LQR response – Heavy penalty on velocity

               

A Python file, lqr_example.py is provided at github that does all the above in the one file. The 
MATLAB files are also provided.

Closing Remarks

The LQR approach was developed by Richard Kalman in 1960 and was the real beginning of the use of
optimization in control systems. The solution provides a time-varying solution as well as a steady state 
solution.

The LQR method is very accessible in MATLAB or Python and provides a means of calculating the 
optimal control gain witch is designed to penalize system states as chosen by the designer. The 
approach works well with both MIMO and SISO systems. The requirements are the system must be 
LTI and (A,B) must be stabilizable. 
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