
Tutorial on Basys 3 FPGA Project #3
Tremaine Consulting Group 3/12/2023

1/6

This blog covers another self-study FPGA project. Project #2 used the Digilent Basys 3 FPGA
development board along with Vivado. That board has an Artix 7 Xilinx chip, specifically the
xc7a35tcpg236-1 part. The tools used in that project were Vivado 2022.2 with the WebPACK license.
Project #3 branches out in two main areas described in the Introduction.

Introduction

Project #3 adds a UART module to display the pseudo-random numbers numbers on a Putty terminal.
To do this I wanted to also learn another development environment so I choose the Altera Cyclone IV
FPGA and developed the RTL using Quartus Prime Lite 20.1. Both sets of tools are free downloads
from Xilinx and Intel.

Project Approach

The project approach was to take the RTL modules from Vivado project #2 and create a project in
Quartus. Since Quartus does not have a Block Design feature I created a new module,
‘design_block.v’, and put the modules that were in the Vivado Block Design into that module. The
project diagram is shown in figure 3 below. The only IP used was the clock generator. This is unique
between Vivado and Quartus. Also, for Quartus I assumed a Cyclone IV chip on a Deo Nano board.
This means the incoming clock was 100MHz for Vivado and 50MHz for Quartus. Other than these
changes, and the pin-outs, the RTL code are the same.

Areas of Learning

The areas of learning in this project were:

• A new development environment, Quartus.

• Designing a Uart in RTL.

• Designing a FIFO buffer in RTL.

• Designing multiple FSM in RTL.

Tutorial on Basys 3 FPGA Project #3
Tremaine Consulting Group 3/12/2023

2/6
 Figure 1 – FPGA Project #3

What the Project Does

The project displays a pseudo-random sequence on the 4-digit 7-segment display that is updated
every one second. The pseudo-random sequence is generated by a linear feedback shift register
(LFSR). Information on this topic is available https://en.wikipedia.org/wiki/Linear-
feedback_shift_register#Fibonacci_LFSRs . In particular the LFSR type used in this project is a
Fibonacci configuration that cycles through through 2m -1 patterns before repeating, and never outputs
0.

The details of Project #1 are in the tutorial here: https://github.com/Btremaine/Basys_3_LFSR.

Project #3 Additions

Project #3 modified the design to instantiate the uart_tx.v RTL module at the top level and add the IO
needed for tx.

The additional functions needed include that at every update of the LFSR value the 16-bit hex word
needs to be converted to four ASCII bytes and those bytes need to have a ‘\n’ appended. the five ASCII
bytes which are then transmitted. The uart then remains inactive until the data valid is asserted at the
next update of the LFSR. A state machine is used to count the four hex nibbles and do the translation to

Tutorial on Basys 3 FPGA Project #3
Tremaine Consulting Group 3/12/2023

3/6
ASCII then add the ‘\n’ character. The terminal display should show one 16-bit hex display per line
with a line return. As example, when the 7-segment displays “f76e”, the uart should transmit {‘66’, ‘37’
‘36’, ‘65’, ‘0a’}. Putty is set-up to operate with an implied CR.

The uart uses the existing 5MHz clock from project 2 and configures the uart timers for a 9600 baud
transmission. The uart is configured as 8-bit, start & stop bit and no parity bit.

Several finite state machines (FSM) were used in this design. The UART is implemented as a 4-state
FSM. The RTL that writes the FIFO buffer was implemented as a 6-state FSM and a separate 6-state
FSM was used to transfer the FIFO buffer contents to the UART. All three FSM use a 1-always
structure. The conversion of a 4-bit hex nibble to 8-bit ASCII byte is done with an asynchronous
combinatorial always block.

A flow diagram of the logic comprising just the UART and finite state machines is shown figure 2
below. This is at the top level module and does not include the modules for the LFSR or Seven-segment
hex display.

Figure 2 – Flow Diagram for modules added to this project.

Tutorial on Basys 3 FPGA Project #3
Tremaine Consulting Group 3/12/2023

4/6
I initially set up a Quartus project and used the RTL modules from project #2. The development, initial
simulation and debug were done in Quartus. I don’t have an Altera development board, so for demo the
RTL was moved back to a Vivado project and built for the Basys 3 board.

Comparing Quartus and Vivado

For simulation, Quartus comes bundled with ModelSim (Intel FPGA Starter Edition 2020.1). There
was a learning curve in using this package but in the end I like it better than than the simulation built
into Vivado. When running simulation in Quartus, ModelSim is launched as a separate program. The
full power of ModelSim is available.

Also, Quartus has a feature in which it will diagram all FSM in the project. This was especially helpful
in debugging. Similar to Vivado, Quartus can also display a schematic of RTL modules.

Static Timing

The static timing was studied after the synthesis run in both Vivado and Quartus.

The timing summary after the modification is shown in Figure 3 for project #3.

Figure 3 – Post Implementation Static Timing Report (a) Vivado (b) Quartus

The worst-case timing slack was positive in all cases with a 5MHz clock.
The system clock is 5Mhz (200ns period), so the WNS of +194.506ns represents a 5.494ns shift from
ideal. There were no Methodology violations reported and no DRC errors reported.

The utilization is very low, as expected for this simple project.

Tutorial on Basys 3 FPGA Project #3
Tremaine Consulting Group 3/12/2023

5/6
Figure 4 – Utilization (a) Vivado (b) Quartus

This is an example of the FSM viewer in Quartus, accessed through Tools→ Net list Viewers→ FSM

Figure 5 – FSM Viewer from Quartus

Tutorial on Basys 3 FPGA Project #3
Tremaine Consulting Group 3/12/2023

6/6
The FSM viewer was very helpful in identifying an error caused by a typo. It compiled okay but the
viewer showed missing and unwanted links. Clicking on a link displays the conditions to take that path.

Source Code

The Verilog source (Vivado & Quartus) code for this project is available on github at:
https://tinyurl.com/367mk52k Each project is individually zipped and the RTL *.v files are also in a
separate sources folder.

A display of the board is shown here in figure 6. Note the Putty terminal in the background displaying
the values.

The 7-segment display is showing a random hexadecimal number and the green LED in the lower right
blinks with a 1 sec period. A video is shown at this link:
https://photos.google.com/photo/AF1QipOCaGtcXtZpQuaBfom1GL8xVYiPAlb2abkTiIhA

After using Vivado to download theough the USB port, Putty is configured to access COM8 as the
USB Uart port.

 Closing

It was a fun project learning Quartus. It took me longer than expected, but I was starting with zero
experience on Quartus or ModelSim. My initial impression is ModelSim runs slower on Quartus, but it
is the full blown ModelSim and has many functions I haven’t explored.

This project allowed me to gain experience in writing RTL for a Uart and also gave me good
experience in developing the FSM structure.

