
1 import itertools
2 import random
3 import sys
4 import math
5
6 """
7 credit to https://github.com/CarlEkerot
8
9 Permission is hereby granted, free of charge, to any person obtaining a copy

10 of this software and associated documentation files (the "Software"), to deal
11 in the Software without restriction, including without limitation the rights
12 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 copies of the Software, and to permit persons to whom the Software is
14 furnished to do so, subject to the following conditions:
15 """
16
17 def held_karp(dists):
18 """
19 Implementation of Held-Karp, an algorithm that solves the Traveling
20 Salesman Problem using dynamic programming with memoization.
21
22 Parameters:
23 dists: distance matrix
24
25 Returns:
26 A tuple, (cost, path).
27 """
28 n = len(dists)
29
30 # Maps each subset of the nodes to the cost to reach that subset, as well
31 # as what node it passed before reaching this subset.
32 # Node subsets are represented as set bits.
33 C = {}
34
35 # Set transition cost from initial state
36 for k in range(1, n):
37 C[(1 << k, k)] = (dists[0][k], 0)
38
39 # Iterate subsets of increasing length and store intermediate results
40 # in classic dynamic programming manner
41 for subset_size in range(2, n):
42 for subset in itertools.combinations(range(1, n), subset_size):
43 # Set bits for all nodes in this subset
44 bits = 0
45 for bit in subset:
46 bits |= 1 << bit
47
48 # Find the lowest cost to get to this subset
49 for k in subset:
50 prev = bits & ~(1 << k)
51
52 res = []
53 for m in subset:
54 if m == 0 or m == k:
55 continue
56 res.append((C[(prev, m)][0] + dists[m][k], m))
57 C[(bits, k)] = min(res)
58
59 # We're interested in all bits but the least significant (the start state)
60 bits = (2**n - 1) - 1
61
62 # Calculate optimal cost
63 res = []
64 for k in range(1, n):
65 res.append((C[(bits, k)][0] + dists[k][0], k))
66 opt, parent = min(res)
67

68 # Backtrack to find full path
69 path = []
70 for i in range(n - 1):
71 path.append(parent)
72 new_bits = bits & ~(1 << parent)
73 _, parent = C[(bits, parent)]
74 bits = new_bits
75
76 # Add implicit start state
77 path.append(0)
78
79 return opt, list(reversed(path))
80
81
82 def generate_distances(n):
83 dists = [[0] * n for i in range(n)]
84 for i in range(n):
85 for j in range(i+1, n):
86 dists[i][j] = dists[j][i] = random.randint(1, 99)
87
88 return dists
89
90
91 def read_distances(filename):
92 dists = []
93 with open(filename, 'rb') as f:
94 for line in f:
95 # Skip comments
96 if line[0] == '#':
97 continue
98
99 dists.append(map(int, map(str.strip, line.split(','))))

100
101 return dists
102
103
104 if __name__ == '__main__':
105 """
106 ### uncomment to generate data given arg n
107 arg = sys.argv[1]
108
109 if arg.endswith('.csv'):
110 dists = read_distances(arg)
111 else:
112 dists = generate_distances(int(arg))
113 """
114
115 inf = math.inf
116 dists = [[0, 14, 9, 7, inf, inf, inf, inf, inf, inf],
117 [14, 0, 14, inf, inf, inf, inf, inf, inf, inf],
118 [9, 14, 0, 10, inf, inf, inf, inf, inf, inf],
119 [7, inf, 10, 0, 9, 15, inf, inf, inf, inf],
120 [inf, 7, inf, 9, 0, 6, 9, inf, 11, inf],
121 [inf, inf, inf, 15, 6, 0, inf, 9, inf, inf],
122 [inf, 9, inf, inf, 9, inf, 0, inf, 9, inf],
123 [inf, inf, inf, inf, inf, 9, inf, 0, 6, 11],
124 [inf, inf, inf, inf, 11, inf, 9, 6, 0, 9],
125 [inf, inf, inf, inf, inf, inf, inf, 11, 9, 0]];
126
127 # Pretty-print the distance matrix
128 for row in dists:
129 print(''.join([str(n).rjust(4, ' ') for n in row]))
130
131 print('')
132
133 print(held_karp(dists))
134

